SHIV SHAKTI

International Journal of in Multidisciplinary and Academic Research (SSIJMAR)

Vol. 1, No. 2, July-August (ISSN 2278 - 5973)

AWARENESS AND USAGE OF INFORMATION RESOURCE MANAGEMENT THROUGH MOBILE ALERTING SERVICES AMONG COLLEGE STUDENTS IN TRICHIRAPPALLI CITY: A STUDY

A.VICTOR¹

Dr V. Geetha²

S. Kameswaran³

Abstract

The effects of communication technology on the nationwide provision and development of information resource management has been dominant theme for professional discussion. ICT enabled service economy; there is great usage in Information resource management. This article investigates the role of mobile alerts for creating awareness and usage of information resources in the Information resource centers. The authors present user study that shows importance of mobile phone among college students, barriers faced, users interest for getting alert, Time preference etc. The study incorporates respondent's preference to alerting services from the information resource centers

Key words: Information Resource Management, Information resources, Mobile Alerts

¹ Librarian and Inf. Assistant, Anna Centenary Library, Kottur, Chennai, Tamilnadu, South India. 600025, ajvictorlib@yahoo.co.in; ajvictorlib@gmail.com

² Associate Professor, P.G. and Research Department of Library and Inf. Science, Bishop Heber College, Trichirappalli-620

³ Librarian, Thanthai Rover College of Paramedical, Perambalur, Tamilnadu

Introduction

A mobile phone (also known as a hand phone, wireless phone, cell phone, cellular phone, cellular telephone or cell telephone) is a long-range, electronic device used for mobile voice or data communication over a network of specialized base stations known as cell sites. In addition to the standard voice function of a mobile phone, telephone, current mobile phones may support many additional services, and accessories, such as SMS for text messaging, email, packet switching for access to the Internet, gaming, Bluetooth, infrared, camera with video recorder and MMS for sending and receiving photos and video, MP3 player, radio and GPS. Most current mobile phones connect to a cellular network of base stations (cell sites), which is in turn interconnected to the Public Switched Telephone Network (PSTN) (the exception is satellite phones). A mobile phone proper typically has a telephone keypad; more advanced devices have a separate key for each letter. Some mobile phones have a touch screen.

2. Mobile Applications

Mobile Applications are developed using the Six M's (previously Five M's) service-development theory created by the author Tomi Ahonen with Joe Barrett of Nokia and Paul Golding of Motorola. The Six M's are Movement (location), Moment (time), Me (personalization), Multiuser (community), Money (payments) and Machines (automation).

3. Alerting service

Alerting service is a service to be in a state of alertness of information resources and information products.

Types:

A. Group Alert Service

It aims at alerting a group of individuals. These can be categorized in to two:

Multidisciplinary service and discipline based service.

B. Individual Alert Service

These services are aimed at providing specific information to an individual's exact requirement in an expeditious manner. Selective dissemination of information, Liaison service etc falls under this category.

4. Mobile alerts

Mobile Alerts are a Short Messaging Services (SMS) Solutions Company based in Ireland founded in 2001 by Robert Fahy. Mobile Alerts offer alerting gate a wide range of immediate text messaging solutions to suit our activities. Mobile Alerts specialize in providing communications channels which empowered into market and communicate resources directly to targeted users, Faculty members, Book sellers and clients by use of SMS in Information resource Management centers

Mobile Alerts provides professional messaging services to small, medium and large clients worldwide. Mobile Alerts have negotiated contracts with a number of networks globally, in order to ensure the highest quality and reliability in service.

- Marketing Alerts
- •Subscription Alerts
- •Club Alerts

5. Methodology

The aim of the paper is to gain insight into how mobile alerts may encourage or hinder the use of resources and services, as well as identify social and psychological factors affecting the adoption or the rejection of mobile communication.

A. Sample design

It is a Sample study based on Random sampling and selected randomly.

B. Sample size

Total number of respondents covered in the study area is 170, 20 respondents have not mobile phones and 150 respondents have Mobile Phone. The researcher concentrated mobile phone owned 150 respondents only.

C. Hypothesis

- 1. There is a relationship between Gender and time preference for Getting Alert.
- 2. There is a relationship between Age and preference of Mobile Alert Services.
- 3. Courses (UG & PG) are not significantly affected by preferring of Information resources through mobile alert.

D. Limitation of the study

The limitation of the study is limited to students studying in colleges at Trichirappalli City only owning their mobile phone.

E. Statistical tools used

Chi-Square statistical tool is applied for testing the hypothesis.

6. Review of literature

SREE PILLAI (2007) studied Rave Wireless and Mobile Campus, the startup companies in the US specializing in text messaging offers the universities an effective cell phone medium for instant communication and alerts. The alert solutions gave the universities the ability to get emergency broadcasting to the entire school or a subset of the school (like students who live on campus), whether it's about a orientation. Even if the message reaches 40% students, the rest will know pretty quickly simply by word of mouth. These companies also helped the schools to adopt their communication channels to meet the needs of today's students, who use MySpace, Face book and text messaging than the traditional emails. While Rave Wireless charges the university and students for their service, Mobile Campus offers free text messaging to university students in exchange for the students agreeing to receive alerts a couple times a day. The company gives university administrators a web-based interface to communicate with students.

Mouzia mousmi and Subrun jamil (2010) in his study, focused the Interfacing module, SMS technology adoption module, SMS banking registration module push pull M-banking services modified data failover module. At last after evaluation module of proposed system a satisfactory accuracy rate 94- 95 % has been obtained and 95% of geographical areas are under cellular coverage and having sufficiency in internet infra structure in remote region.

7. Concepts

PUSH provides a standard means to send data to a mobile user without an explicit request from the user at the time data is delivered. This service generation sub module composed of three categories of m-Banking services: Broadcast, Scheduling and Event category.

PULL technique provides the required services in reply of user service orders. This service provides interactivity to the user, who can through SMS make an enquiry and get the answers in real time.

8. Data Analysis and Interpretation

Table 1.

Distribution of respondent's based on characteristics of study population

S. no	Characteristics	No	Percentage			
A. Ag	A. Age					
1	18 To 20	68	45.33			
2	21 To 23	78	52			
3	24 To 26	4	2.67			
B. Sex	B. Sex					
1	Male	94	62.67			
2	Female	56	37.33			
C. COURSE						
1	UG	62	41.33			
2	PG	88	58.67			

Table 1 shows the distribution of respondents by Age 52 % of the respondents belongs to 21 to 23 of age, 45.3 % of the respondents are 18 to 20 of age remaining 2% of the respondents are 24 to 26 age, By gender ratio 63.67% of the respondents are male and remaining 37.33% are female respondents and above table shows the graduation wise respondents having a mobile in college students of Trichirappalli city.

Table 02 Distribution of respondent's based on mobile phone usage

S.no	Mobile Phone	No	Percentage
A.	Mobile Phone use		
1	SMS	79	30.03
2	MMS	34	12.93
3	Conversation	62	23.57
4	Sharing File Via Bluetooth	41	16.00
5	Educational Audio and video	47	17.87
В.	Internet connectivity		
1	Yes	54	36
2	No	96	64

As shown table 2, 79 (30.03%) respondents use mobile phone for SMS purpose, 62 (23.57%) respondents use for conversation with others, 47 (17.87%) are interested to use mobile phone for educational audio and video. Table 2 shows that majority of the respondents (64%) are not having internet connectivity in their Mobile phone

Distribution of respondents based on Alerting service through mobile phone related to information resources

Table 03

S.no	Alerting service	No	
A. H	appiness of receiving mobile alerts		l l
1	Yes	96	64
2	No	54	36
B. U	sers interest		
1	Shopping/Advertisements	12	4.48
2	Astrology	46	17.16
3	Cricket	34	12.67
4	News	30	11.19
5	Jokes	12	4.48
6	Caller tune alerts	62	23.13
7	Talk time offers	42	15.67
8	Finance	22	8.21
9	Travel	6	2.25
10	Others	2	0.76
C. B	arriers related to alerts		
1	Unawareness	18	12
2	Privacy concerns	48	32
3	Poor quality of alerts	30	20
4	Complexity of the handsets	36	24
5	Slow excess speed	16	10.67
6	Others	2	1.33
	Permission for mobile alerts		
1	Yes	96	64
2	No	54	36

	Users replay		
1	Yes	92	61.33
2	No	58	38.67
	Satisfaction		
1	Yes	96	64
2	No	54	36
	Interested time		
1	6am To 9am	30	20
2	9am To 12 noon	14	9.33
3	12 noon To 3pm	28	18.67
4	3рт То 6рт	20	13.33
5	6pm To 9pm	24	16
6	Any Time	34	22.67

Table 03 shows that 64 % of the respondents are happy to receive mobile alerts and remaining 36 % of the respondents are unhappy to receive mobile alerts. Related to users interest for receiving mobile alerts, 62 respondents interested that caller tune alerts is preferred one and followed by astrology (17.16%), talk time offers (15.67%) and etc..

From this table it is noted that directly the users are more considered about Privacy concerns (32%) out of 150 respondents related to facing barriers in mobile alerts and followed by complexity of the handsets (24%). 96 respondents (n=150) would like to get permission from the mobile holder and 54 respondents need not to get permission from the mobile holder.92 respondents are replied to the mobile alerts but 58 respondents are not interested to reply.

64 % of the respondents are satisfied related to receive mobile alert service and 36 % of the respondents are not satisfied. 34 respondents would like to receive mobile alerts at any time and followed by 6am to 9am (30).

Table 04 Awareness and usage of Mobile alerts related to information resources

	High	Medium	Low	Total
Awareness	62 (41.33)	57 (38)	31 (20.67)	150
Usage	15 (10)	33 (22)	102 (68)	150

Table 04 indicates that majority of the respondents (41.33%; n=150) do not have awareness from the information resource management resource centers. Usage of mobile alerts related to information resources is very low (68).

Table 05

Relationship between Age and user Preference for Getting Alerts

S.no	Age	User Preference service		Inferences
		Pull service Push service		$X^2 = 2.52$
1	18-20	28	40	df = 2
2	21-23	38	40	p <0.05
3	24-26	0	4	Significance

The calculated value (2.52) is less than table value (5.99147) at two degree of freedom at 0.05 level of significance. Hence the hypothesis "There is a relationship between Age and Time preference for getting alerts" is accepted.

Table 06

Relationship between User time and gender related to receiving mobile alerts.

S.N0	Time	Gender	r	
		Male	Female	
1	6am To 9am	14	16	X = 2.545
2	9am To 12 noon	8	6	-df = 5
3	12 noon To 3pm	18	10	$\mathbf{u}_1 = \mathbf{y}_1$
4	3pm То 6pm	12	8	p < 0.05
5	6pm To 9pm	20	4	
6	Any Time	22	12	Significance

Chi – square is applied to test the hypothesis. The calculated value (2.545) is less than table value (11.0705) at 5 degree of freedom at 0.05 level of significance. Hence, the hypothesis "There is a relationship between user time preference and gender" is accepted.

Table 07

Distribution of respondents based on preferences of alerting services in information resource centers

S.No	Description	UG	PG	Total	
1	New Arrivals	47	88	135	Inferences
2	Book renewal/ reservation/ Fine	78	59	137	
3	Content alert	56	72	128	$X^2 = 58.073$
4	Day to day information	67	74	141	$\Lambda = 36.073$
5	Placement	71	57	128	
6	Higher studies	94	43	137	df = 9
7	Library Promotion activities	46	43	89	
8	Open sources	51	86	137	p< 0.05
9	New Service	49	89	138	p < 0.03
10	Whishes/ Results	41	33	74	
	Total	600	644	1244	Not significant

The calculated value (58.073) is more than the table value (16.9190). Hence the hypothesis may not be accepted. Thus we conclude that courses are significantly affected by preferring of Information resources through mobile alert.

09. Findings

- 1. It is noted directly those 21 to 23 of age students are more using mobile phones.
- 2. It is noted directly those male students are using mobile phone more than female students
- 3. It is found that PG (62) respondents are more using mobile phone
- 4. SMS (30.03%) is the most preferred purpose in using of mobile phone, conversation with others (23.57%) is the second and followed by educational audio and video (17.87%), sharing file (16%) and MMS(12.93)

- 5. The study found that Majority of the respondents (64%) are not having internet connectivity in mobile phone
- 6. Receiving of mobile alerts is accepted by respondents (64 %)
- 7. Caller tune alerts (23.13%) is mostly prefer one by respondents and followed by astrology (17.16%), talk time offers (15.67%) and etc.
- 8. Privacy concerns (32%) are the important barrier in mobile alerts and followed by complexity of the handsets (24%).
- 9. Respondents (64%) like to get permission from their related group to sending mobile phone alerts.
- 10. Hypothesis is proved by showing.

10. SUGGESTIONS

- Communication provider should provide discount and free of cost for SMS to Library and Information centers.
- 2. Mobile communication provider may reduce subscription for alerts, then only more number of users utilized.
- 3. Alert sender should provide mobile alert service before and after working hours.
- 4. Alerts should be used for all users.
- 5. Users should utilize alerts for correct and needed purpose.
- 6. Mobile Phone is the right choice for promoting Library activities in the electronic era.

11. CONCLUSION:

The Mobile alerts are not personal one-to-one communications; they have an aspect of broadcasting. Most of the users appreciated the concept of alerts as long as they are in control. In conclusion we can say that personalization (individualization) is important for this type of service in two ways:

- The context of the alerts (physical and moral)
- The content of the alerts

The context of the alerts may also be further developed in the direction of personalization. The users speak of alerts in different modalities (sound, visual signs, to PC and mobile phones), but they also consider the mental and moral context for the alerts. The researcher mentioned earlier it is not appropriate to receive alerts in many social contexts. The content of the alerts also relates to personalization and individualization. Many users were concerned about the alerts matching their interests. They wanted the alerts to suit their personal profile.

12. References

- 1. Kidd, A.G (2004). Mobile communication regulations updated: How safely are doctor's telephone used. Journal of Qual Saf Health care, 13, 478.
- 2. Sinha (2008). BPUT Alert: Mobile Alert Service for University.
- 3. Palanivel, T.G and Nakkeeran, R (2009). Wireless and mobile communication. New Delhi: PHI Learning.
- 4. Ling, Rich and Donner, Jonathan (2009). Mobile communication. UK: Cambridge.
- 5. Rhee, Man Young (2009). Mobile communication systems and security. Asia: J. Wiley and sons.
- 6. Katz, James E and Aarhus, Mark A (2002). Perpetual contact: mobile communication private talk, public performance. Cambridge: Cambridge University Press.